DEGENERATE POINCARE-SOBOLEV INEQUALITIES

CARLOS PEREZ AND EZEQUIEL RELA

ABSTRACT. We study weighted Poincaré and Poincaré-Sobolev type in-
equalities with an explicit analysis on the dependence on the A, con-
stants of the involved weights. We obtain inequalities of the form

(@/@v - fQ|qw)}1 < Cul(Q) (w(l@/QWfpw);,

with different quantitative estimates for both the exponent ¢ and the
constant C',,. We will derive those estimates together with a large variety
of related results as a consequence of a general selfimproving property
shared by functions satisfying the inequality

][ 1 — faldp < a(Q),
Q

for all cubes Q C R™ and where a is some functional that obeys a specific
discrete geometrical summability condition. We introduce a Sobolev-
type exponent p;, > p associated to the weight w and obtain further
improvements involving LPw norms on the left hand side of the inequality
above. For the endpoint case of A; weights we reach the classical critical
Sobolev exponent p* = np—_"p which is the largest possible and provide
different type of quantitative estimates for C,,. We also show that this
best possible estimate cannot hold with an exponent on the A; constant
smaller than 1/p.

As a consequence of our results (and the method of proof) we obtain
further extensions to two weights Poincaré inequalities and to the case
of higher order derivatives. Some other related results in the spirit of
the work of Keith and Zhong on the open ended condition of Poincaré
inequality are obtained using extrapolation methods. We also apply our
method to obtain similar estimates in the scale of Lorentz spaces.

We also provide an argument based on extrapolation ideas showing
that there is no (p,p), p > 1, Poincaré inequality valid for the whole
class of RH~ weights by showing their intimate connection with the
failure of Poincaré inequalities, (p,p) in the range 0 < p < 1.

March 18, 2019

1. INTRODUCTION AND MAIN RESULTS

The celebrated Moser iteration method (see for instance [HKMO06, SC02])
is a powerful and flexible devise to prove the local Holder regularity of the
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weak solutions of elliptic PDE due independently, and by different methods,
to De Giorgi and Nash. This method has two important key steps. One is
the (2,2) Poincaré inequality and the other is its correspondent Poincaré-
Sobolev (2*,2) inequality where 2* is the classical Sobolev exponent. In
[FKS82] it is considered this problem within the context of degenerate elliptic
PDE, namely it is considered the operator Lu = div(A(x)Vu) where A is
an n x n real symmetric matrix in R™ satisfying the “degenerate” elliptic
condition
A(@)E.€ ~ ¢ w(x),

where the “degeneracy” is given by a weight w in the As class. To do this it
is proven in [FKS82] appropriate weighted Poincaré and Poincaré-Sobolev
inequalities (cf. also [HKMO06]). One of the main purposes of this paper is
to improve some of the main results from [FKS82]. To be more precise we
are interested in proving weighted Poincaré-Sobolev inequalities of the form

(o0 s fQ|qw)(11 <@ (g /. IVf\pw>; ,

where 1 < p < ¢ < oo and w is a weight function in the A, class of Muck-
enhoupt (see Section 2 for the precise definitions). We will improve these
results in two ways: 1) By producing a quantitative control of the constant
Cy and 2) by producing a more precise control of the exponent ¢ as a func-
tion of p, n and, often, the A, constant of the weight. To accomplish this we
will follow the general framework introduced in [FPW98| which allowed to
produce in a unified manner the main results of [FKS82] and many others.
These results are obtained in the context of Spaces of Homogeneous Type
where the underlying measure is doubling. The main results were improved
in [MP98] and were also further exploited in the context of nondoubling
meausures in [OP02]. In the current work we introduce new techniques to
continue using this method with some novelties which allow to sharpen and
improve the main results from the articles mentioned above. As a conse-
quence, we will also show that our new method contains a different proof
of the John-Nirenberg estimate for generalized BMO functions in a more
precise way.
Consider as a starting point an inequality of the form

(11) ]é\f—fczldué a(Q).

where a : Q@ — (0, 00) is a general functional defined over the family of cubes
in R™ with sides parallell to the coordinate axes, denoted by Q, satisfying an
appropriate extra discrete summability geometric condition. Then there is
a self-improving phenomenon of the inequality above that allows to obtain
an L" estimate for some r > 1 depending on the choice of the functional a.
The first result of this type was obtained by L. Saloff-Coste in [SC92] and
later on, in a the context of metric spaces with a doubling measure (X, d, ),
was obtained in [HaK95] by P. Hajlasz and P. Koskela for the more standard
situation,

_o(B)
o(B) = iy [, o
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We refer to [HaK00] for a general account of the relevance of Poincaré type
inequalities in such general contexts.

A different and more flexible approach was introduced in [FPW98|. The
key point of this paper is the use of the following geometric type hypothesis
that recalls Carleson’s condition.

Definition 1.1. Let w be any weight. We say that the functional a satisfies
the weighted D,, condition for 0 < p < oo if there is a constant C' such that
for any cube () and any family A of pairwise disjoint subcubes of @, the
following inequality holds:

(1.2) > a(P)Pw(P) < CPa(Q)'w(Q).

PeA
The best possible constant C' above is denoted by ||a|| and also we will write
in this case that a € D,(w).

We include here the main theorem from [FPW98] in the simplest context
which is the initial result in this theory. We will use the following notation
for the weak weighted normalized norm over a cube Q C R"™.

lages, o= sup (U2 €@ AN
Theorem 1.2 ([FPWO8]). Let w be an As weight and let a be a functional

satisfying the weighted D, condition (1.2) for some p > 0. Let f be a locally
integrable function such that

1
Q|/Q|f—fQ| < a(Q).

Then the following weak type inequality holds:

(1.3) If = fQHL”"O © w = Cllalla(@)-
w(Q)

Although this result is very flexible and useful as can be shown in [Saa]
or [PPSS], the method does not provide a good control of the bound C' and
r specially in the weighted situation. We also refer to the interesting paper
[BKM16] where a connection with the so called John-Nirenberg spaces can

be found. A model example of a functional a is the one defined as
1

(1.4) Q.0 =4Q (55 / Vi@ i)

Combining Theorem 1.2 with the truncation method, also called weak im-

plies strong (see Section 11.1), we can prove that
1

(1.5) <w(1Q) /Q - erpw) " < CaQ, f),

with w € A,. However, this method is not so precise since we loose control
of the A, constant [w]4,. We use a different general approach which allows
to prove directly

(16) (/ . erpu> < ealu, )47 0(Q (/ IVf!pv> |
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as a consequence of Theorem 1.5 below. This estimate is not so well known
and can be obtained by standard methods using fractional and maximal op-
erators, combined with the truncation method. Also, using a variant of the
proof of of Theorem 1.5 we can consider generalized Poincaré type inequal-
ities related to higher order derivatives. Indeed, we will show the following
two weighted estimate in Corollary 1.25 as a consequence of Theorem 1.24:

_ % 1/p m m %
an L1 PosPu)” < enalusili7 @ L o)’

where Pgf is an appropriate polynomial of order m — 1. This estimate
seems not be known since the truncation method cannot be used in the case
of higher order derivatives.

To do this we will be assuming a more precise geometric hypothesis on
the functional a(Q) stated in Definition 1.4. Here we will impose that the
functional a preserves some sort of “smallness”. This variant of the D,
condition will produce more refined results as those obtained in [FPWO9§|
and subsequent papers [MP98, LP05].

We start by introducing the notion of “smallness” of a family of pairwise
disjoint subcubes of a given cube Q.

Definition 1.3. Let L > 1 and let Q be a cube. We will say that a family
of pairwise disjoint subcubes {Q;} of @ is L-small if

|
(1.8) Z @il < 7

We will also denote {Q;} € S(L)

Now, the correct notion of a D,-type condition in this context is the
following.

Definition 1.4. Let w be any weight and let s > 1. We say that the
functional a satisfies the weighted SDj(w) condition for 0 < p < oo if there
is a constant C' such that for any cube @ and any family {Q;} of pairwise
disjoint subcubes of @ such that {Q;} € S(L), the following inequality holds:

(19) S al@ru@) < (1) a@rul@)

7

The best possible constant C' above is denoted by ||a|| and also we will write
in this case that a € SD;(w). We say in this case that the functional a
“preserves” the smallness condition of the family of cubes.

At this point, we should present an example of a functional satisfying
the SD;(w) condition. The following very general model for a(Q) fulfills
the requirements. Let p be any Radon measure and define the fractional
functional

(1.10) a(@Q) = Q)" (

More specific examples are

0@ =@ (g / g)l/p, (@ = 1Q" (i / rvmfrp)l/p,

1

1/p
w(Q)’u(Q)> ; a,p > 0.



WEIGHTED POINCARE 5

where m = 1,2,.... We will include in Lemma 3.2 a very simple computa-
tion showing that the functional (1.10) satisfies the SDj /e (w) condition.

1.1. Generalized (p,p) Poincaré. Our first main result is the next theo-
rem which is an important improvement of Theorem 1.2 obtaining the same
inequality for the strong norm.

Theorem 1.5. Let w be any Ay weight. Consider also the functional a
such that for some p > 1 it satisfies the weighted condition SDy(w) from
(1.9) with s > 1 and constant ||a||. Let f be a locally integrable function

such that .
Q|/Q 1~ fol < a(Q),

for every cube Q. Then, there exists a dimensional constant C, such that
for any cube Q

(1.11) (w(lQ) /Q |f—fQ|pwdx)’l’ < Cysllal*a(Q).

Remark 1.6. An important point is that the A,, constant does not appear
in the result, estimate (1.11), even though it is assumed that the weight w
is an A, weight. We believe that the result holds without assuming any
condition on the weight w.

Note that obtaining the strong inequality is relevant, since there is no
need to use the truncation method and then, many other functionals be-
yond the case of the gradient can be considered. As an example, we can
derive the (p,p) Poincaré inequality (1.6) directly, in a different way than
the one presented in Proposition 11.8 which requires fractional and maximal
operators.

We now present several corollaries of this first main theorem.

Corollary 1.7. Let p > 1 and o > 0. Let 1 be a measure and let w be
an A weight. Suppose that f is a locally integrable function such that for
some constant a > 0, we have

@/Q |f = fol < al(Q)" <w(1Q)N(Q)>1/p,

for every cube Q. Then

(50 V7= sair dm)l/p < Oy (w(l@u(@)l/p,

where ¢, is a dimensional constant.

As a consequence we derive the following two weight Poincaré inequality
where we don’t use the truncation method.

Corollary 1.8. Let (u,v) € Ap, u € Aw. Then the following Poincaré
(p,p) inequality holds
1/p

<u(1Q)/Q If = folPu d:r) w < Cn[uav]ipg(Q) (u(lQ) /Q IVfPv d"’:) ,

where ¢, 1s a dimensional constant.
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The proof of Theorem 1.5 was inspired by the beautiful argument used
by Journé in [Jou83] to prove John-Nirenberg’s theorem. In fact, from our
Theorem 1.5 we can derive the following corollary, which easily implies the
celebrated John-Nirenberg’s inequality with a different argument.

Corollary 1.9. Let f be a locally integrable function and suppose that there
is an increasing functional a such that

1
Q|/Q|f—fc2| < a(Q),

for every cube Q. Then, there exists a dimensional constant c,, such that for
any cube @

If — fQ”expL(Q,fQ—z‘) < cna(Q)

Here we used the usual Orlicz type norm:

||g||eXpLQ =inf{\ >0 : ]Q|/ < >d <1} g=>0

with ®(¢) = et — 1

For the proof we observe readily that if a is increasing, namely P C Q
implies a(P) < a(Q), then a satisfies the unweighted SDJ for any p > 0
with ||a|| < 1. In particular if 1 < p < oo, by (1.11) in Theorem 1.5, there
exists a dimensional constant ¢, such that for any cube @,

<@/¢2|f—fglpdm>p < capal(Q).

Now, we use the following well know estimate: let (X, u) be a probability
space and let a function g such that for some pg > 1, ¢ > 0, and a > 0 we
have that

9l o (x ) < €P™ P = po.

Then for a universal multiple of ¢,

191 eyt ey < €

We conclude by considering X = Q, du = %, g = ‘J; zg;?'

Now, specializing the above corollary for the case a = 1, we recover John-
Nirenberg’s theorem.

and o = 1.

Remark 1.10. A variant of the method we use also produce the following
weighted estimate

If - fQHeXpL(Q,%) < CullfllBMmo [w] A, a(Q)

when « is an increasing functional.

As a consequence of Theorem 1.5, using ideas from extrapolation theory
from [Duo] [CUMP11] and we are able to derive in Corollary 1.11 a result in
the spirit of the celebrated theorem of Keith and Zhong [KZ08] on the open
ended property of Poincaré inequalities. The proof of this corollary will be
presented in Section 4.
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Corollary 1.11. Let w € A, and 1 < py < oo and let also ¢ : [1,00) —
(0,00) be non-decreasing. Let (f,qg) be a couple of functions satisfying the
following Poincaré (1,po) for any w € Ay,

1

1) [ 17 = folds < ul, )@ (w(l@ / o wis) "

Then, for any p such that 1 < p < pg the following estimate holds for any
weE Apy:

—1
Po 1

(s s fQ\pwdw); < cplenmn 01 Q) (575 Lo wdx);

where ¢ is a constant depending on p,py and the dimension.

1.2. Generalized (p},,p) Poincaré-Sobolev. In this section we want to
move further in the direction of Poincaré-Sobolev inequalities. In the case
of Lebesgue measure and for the particular case of the functional given by
the gradient, the critical index is p* = np—fp > p (see [Sob91, Gagh8, Mor40]).

Our next results provide further improvements for (p,p) Poincaré type
inequalities for A, weights, 1 < ¢ < p. Here we introduce the Sobolev
index p > p to obtain a wider range of exponents. In addition, we obtain
sharper estimates on the dependence on the A, constants. We will obtain
inequalities of the form

If = fQ”LP'Tu(Q’%) < Crp(w)l(Q) ||VfHLp(Q7$(7fg>) )

where the exponent p}, depends on the weight w € A,. Note that we fix
the value of p on the right hand side and pursue the best possible exponent
pyy- There will be some sort of balance between our best p;, and the sharper
quantitative estimate for ¢(w). The main difficulty to overcome is to obtain
the “smallness preservation” for the functional a when dealing with higher
exponents. In that case, it will be crucial to use some extra geometric
consequences of the membership of the weight into the A, class.
We have the following theorem.

Theorem 1.12. Let 1 <p < n and let w € Ay with 1 < q <p. Let also p},
be defined by

11 1
(1.13) —

p vy nlg+loglwla,)
Let a be the functional defined by

) 1 1/p

W@ =1Q) (5g1@)

where p is any Radon measure. Suppose that f satisfies
1

(114) 01 .\~ fal <0(@

for every cube Q. Then, there exists a dimensional constant C' such that for

any cube Q )
1 X Pry
(g |1~ fartwir)™ < cuta)
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As an immediate corollary we obtain a weighted Poincaré-Sobolev (pZ,, p)
inequality.

Corollary 1.13. Let 1 <p <n and let w € A; with 1 < q < p. Let pj, as
in the previous theorem. Then the following inequality holds.

(s / If—lepr“wdfv>;a < 3,49 (555 / IVfI”wde‘)l/p-

Let us discuss briefly the different results depending on which class of
1

weights is w. The constant on the inequality is always [w] f‘p and this will
not improve by assuming ¢ < p in the corollary above. The difference will
appear on the value of p}. For example, when ¢ = 1 we obtain an A;
inequality of the form

(o0 / \f—fcz!pfﬂwdwy% < 3,4 (g / Vf\pwdx)l/p

with
1 I 1
p Py n(l+loglwla,)
This result should be compared to Corollary 1.22, where we obtain by
_pn_ 1 1

means of other arguments, that p* = -7 (which is equivalent to 11 _ 1
P PP n

instead of p}, and linear dependence on the A; constant [w]4, on the right
hand side of the inequality. Here we improve the constant by replacing the
1

linear [w]a, constant by [w]gp but, on the other hand, we do not reach
the usual Sobolev exponent p* associated to the constant weight. We will

further improve on this in Corollary 1.15.

1.3. Generalized Poincaré-Sobolev and the good-\A method. The
Sobolev exponent obtained in Theorem 1.13 can be improved, namely, we
can obtain larger values of p for the (pf,p) Poincaré type inequalities.
However, we have to pay with some extra powers of the A, constants in
front. The reason behind that is that we will be using the very well known
method of “good-\" inequalities of Burkholder and Gundy in a similar way
as done in [FLW96, MP9g].

We have the following theorem. Since we will be using both D,(w) and
SD,(w) conditions on the functional a, we emphasize the difference between
them by using the notation [|a||p, () for the first.

Theorem 1.14. Let a be a functional satisfying:

(1) For some p > 1 it satisfies condition SDy(w) from (1.9) with norm
1. Namely, for any cube Q and any family {Q;} of pairwise disjoint
subcubes of Q such that {Q;} € S(L) with L > 1, the following
inequality holds:

(2

Z a(Q:i)Pw(Q;) < (2) . a(Q)Pw(Q).

(2) For some r > p the functional a satisfies the Dy(w) condition (1.2),
that is, there is a constant ||a| p, () such that for any cube Q and any
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family A of pairwise disjoint subcubes of Q, the following inequality
holds:
S a(P) w(P) < [lall}, oy o(Q) w(Q).
PeA
Let f be a locally integrable function such that

1
@/Qu—fma(@)

for every cube Q.
Let w € Ap. Then, there exists a constant c such that for any cube @

1
1 = Jally st < €Nl o], (@)

Now, combining this result with the weak-implies-strong argument, we
obtain the following corollaries on Poincaré Sobolev inequalities.

Corollary 1.15. Let 1 <p < n. Let w € A, with 1 < g < p. Define the
exponent py, by the formula

1 1 1

p P, ng
Then the following Poincaré-Sobolev (pf,, p),inequality holds

1 2

1 . o 2 ) !
(w(Q)/QUfQWWwd:E) < C[w]ﬁ';[w]zpf(Q) <w(Q)/QVf|p“}d$) 7
where C' = Cy, .

Remark 1.16. We remark that this corollary improves the main result for
A, weights from section 15.26 of [HKMO6].

Remark 1.17. We also remark here that in the case of w € A1, namely under

a stronger condition, we recover the classical Sobolev index p}, = p* = n"—_pp,

1 1
P

(11}(1@/Q|fo’p*wd$>P* SC[w]jl[w}if(Q) <w(1Q)/Q|vf|pwd$> ,

with C' = C,, . That is, the A; class of weights behaves in that aspect as
the Lebesgue measure. This improves the result given in Lemma 15.30 p.
308 of [HKMO6] since we are able to reach both optimal endpoints, namely
the exponent p = 1 and the (unweighted) Sobolev exponent p* = %, for
any 1 < p < n. This result should be compared with Corollary 1.22 below
where we also derive by different methods a similar estimate with a worst
constant in the range 2n’ < p < n.

The proof of Corollary 1.15 essentially reduces to check that the generic
functional given in (1.10) (which includes the case of the gradient) satisfies
the hypothesis (1) and (2) from Theorem 1.14 involving an explicit estimate
of ||a]|. The fact that the functional

a(Q) = Q) (w(lQ)u(@))W
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satisfies condition (1) will be obtained in Lemma 3.2. An appropriate value
of r satisfying condition (2) and the norm estimate for the functional a is
the content of Lemma 1.18 below.

Lemma 1.18. Let 1 < p < n and let a(Q) defined as in (1.10) with o = 1,
namely

Q) = Q) (5@ "

w(Q)
Let w € Ay with 1 < q < p. Define the exponent py, by the formula
111
p Py ng

Then for any family {Q;} of pairwise disjoint subcubes of Q the following
mequality holds:
* @ *
(1.15) S a(@u w(@s) < [ul 3 a(Q)Pw(Q).
i

That is, the functional a satisfies the condition Dy (w) and further we have

1

nq
that ||al| < [w]Aq.

We also will show that our method provides similar results in the scale of

Lorentz spaces. More precisely, we obtain similar inequalities as in Corollary
1.8 assuming that the gradient satisfies a stronger condition in the (local)
Lorentz space LP! but with a larger class of weights 4,1 which contains A,.
This class of weights was introduced by Chung-Hunt-Kurtz in [CHKS82] (see
the precise definitions in Section 9).

Corollary 1.19. Let w € Ay 1, then there exists a dimensional constant cy,
such that for any cube Q

(o0 / f—lepwd5E>; < cal @l

Remark 1.20. Asin the LP case it would be possible to derive some Sobolev-
Poincaré inequalities like in Theorem 1.12 or 1.14 but we will not pursue in
this direction.

v/

Lr1(Q, ey’

By means of a completely different method, we will present a special two
weight Poincaré-Sobolev inequality involving the maximal function on the
right hand side where no assumption is assumed on the weight. As usual,

we will denote by p* be the classical Sobolev exponent,
1 1 1
—— === 1<p<n.
p D n

We have the following theorem.

Theorem 1.21. Let w be a weight in R™, n > 2. Then if 1 < p < n we
have that

i) ([ 15~ faul “war)” <0< / IVfldex);
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From that basic estimate, we derive a quantitative Poincaré-Sobolev in-
equality for A; weights. Further, we explore the sharpness of the result.

Corollary 1.22. Under the same hypothesis of Theorem 1.21, if in addition
we have that w € Ay, then

w1 (oo / rf—fQ,w\p*w)pl*Sc[wmle(@) (50 / prw)’l’.

Furthermore, the result is sharp in the case p =1 in the sense that [w]a,
cannot be replaced by Y([w]a,) with ¥ : [1,00) — (0,00) satisfying ¥(t) =
o(t) ast — oo.

As mentioned before, the conclusion of Corollary 1.22 should be compared
to the result in Corollary 1.15, where this result is improved for large enough
values of n and p (more precisely p € (2n’,n), n > 3). It should be also
compared to the necessary condition given in Proposition 7.3 regarding the
best possible exponent on the Ay constant in the case p > 1. We will present
an example showing that the best possible exponent for the A; constant in an
inequality like (1.17) is 1/p. That suggests that the conjecture on weighted
Poincaré inequalities for A; weights should be the following;:

Conjecture 1.23. Let w be an Ay weight in R™, n > 2. Then if 1l <p <n

(w(lQ) /Q /- fQ,w|p*w) ¥ < ol 4Q) (w(l@ /Q |Vf|”w)’l’ '

1.4. Generalized Poincaré inequalities with polynomials. As we al-
ready mentioned we also present an extension of our main result in Theorem
1.5 that can be used to obtain self-improving properties within the context
of generalized Poincaré inequalities with polynomials. This is intimately
related to understanding higher order derivative estimates where the trun-
cation method is not available.

Let m € N. We denote by Pgf the projection of the function f over
the space P,, of polynomials of degree at most m in n variables on @ (see
Section 8 for a more detailed discussion).

Theorem 1.24. Let w be any Ao weight. Consider also the functional a
such that for some p > 1 it satisfies condition SD,(w) from (1.9) with s > 1
and constant ||al|. Let f be a locally integrable function such that

1
@/QV—PQJC\ < a(Q),

for every cube Q). Then, there exists a dimensional constant Cy, ,, such that
for any cube Q)

1 z s
(w(Q) /Q rf—PQowdx) < 27 salalQ)

s+1
where Cy, is a dimensional constant. When p = 1, the factor 2 » wvanishes.

As a consequence of this theorem, we are now able to present a proof of
inequality (1.7) which is an extension of the result in Corollary 1.8.
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Corollary 1.25. Let (u,v) € Ap,u € As. Then the following Poincaré
(p,p) inequality holds

1
(s [ 17 = PasPude) < clusli 1@ (5 [ 1V aPv o)’
- u axr < u, v - v dz :
u@Jo" " T

where C' = Cy, , 15 a dimensional constant.

It is also clear that we can derive some results in the spirit of Theorem
1.12 but we will not pursue in this direction.

1.5. Lack of Poincaré inequalities for all RH., weights and the
failure of Poincaré inequalities in the range p < 1. In this paper we
also address the problem of characterizing the class of weight functions such
that a Poincaré (p,p) inequality holds. Far from being able to provide a
complete answer, we include the following negative result which says that
the class RH is too big. We recall that a weight w belongs to the the class
RH if there is a constant ¢ such that

supwgc][w.
Q Q

This definition means that w satisfies a reverse Holder’s inequality for any
exponent and hence RHy, C As. It is well known that |7| € RHo, when 7
is a polynomial in R”. It is also known that (Mu)~* € RH,, (see Lemma
10.1)

Theorem 1.26. Let 1 < p < oo and suppose that a Poincaré (p,p) inequal-
ity holds for the class of weights RHo, namely that

(1.18) inf </ |f — a|pwd:1;>p < cl(Q) </ ]Vf\pwdx>p w € RHy
. Q Q

with constant c independent of the cube QQ C R™. Then, for every 0 < g < 1
it also holds that

(1.19) inf (/Q f— d:v)é < cl(Q) (/Q vl dx)é,

with constant ¢ independent of Q. Since this is false, (1.18) cannot hold for
every w € RH,. In particular, it follows that (1.18) cannot hold for every
wE Asx

We recall here that there is an example from [BK94, p.224] proving that
(1.19) fails in general. The proof of Theorem 1.26, which can be seen as an
application of some extrapolation type arguments, is presented in Section
10.

1.6. Outline. The organization of the paper is as follows. Section 2 is de-
voted to collect some notation and well known results as well as to summa-
rize some previous and auxiliary results. In Section 3 we develop the general
quantitative theory of self-improving functionals a(Q) discussed above, prov-
ing Theorem 1.5 and it consequences. In Section 4 we discuss the results
related to Keith-Zhong’s theorem. We show what kind of higher exponents
can be reached using Theorem 1.5 in Section 5. The approach involving the



WEIGHTED POINCARE 13

good-A technique is contained in Section 6, where we prove Theorem 1.12
and obtain Corollary 1.15. In Section 7 we prove the mixed weight Poincaré
inequality from Theorem 1.21 and derive from it the A; result providing the
proof of Corollary 1.22. We also discuss the best possible dependence on
[w]4,. In Section 8 we discuss some extensions and applications of our meth-
ods to two-weight Poincaré inequalities and to inequalities involving higher
derivatives. In Section 9 we present applications to Poincaré inequalities on
Lorentz spaces. Section 10 contains the negative result from Theorem 1.26.

We also include an appendix in Section 11 for completeness. There we
present the connections between Poincaré inequalities and fractional inte-
grals and we also include the so called truncation method which yields that
an appropriate weak type estimate implies the corresponding strong inequal-

1ty.

2. PRELIMINARIES AND SOME WELL KNOWN RESULTS

Recall that we are interested in proving weighted Poincaré inequalities of
the form

I / If—leqw>; < i@ (45 / Wf|pw)’l’,

where 1 < ¢,p < oo and w is a weight function, i.e., a locally integrable non-
negative function. As usual, we will denote by f, f dx = fr = ‘—}13' Jp f dx
the average of f over E with respect to the Lebesgue measure. For a given
measure /. defined for every cube @, we will denote fg, = JCQ fdu =

m fQ fdu. In the particular case of densities given by a weight w, we

will write fg ., = ﬁ fQ fwdzx.

A brief remark on the oscillation on the left hand side is in order. One
should try to prove the inequality for the oscillation with respect to the
weighted average fg.,, but we can, essentially, prove inequalities like (2.1)
with any constant c instead of the average fg. This is a consequence of the
fact that

1

1 q . 1 %
<w(Q) /Q IF = fou qw> = 2@211% (w(Q) /Q = C|qw> '

We are particularly interested in the quantitative analysis on the constant
C'(w) when the function w belongs to a certain class of weights. As already
mentioned, after the work [FKS82], a natural scenario for this analysis is
the class of Muckenhoupt A, weights defined as follows. For 1 < p < oo and
p'=p/(p—1), aweight wisin Ay, 1 <p < oo, if

(2.2) 1, = s <]£2 wdm) (ﬁ w7 da:)pl < o0,

where the supremum is taken over all cubes () C R™ with sides parallel to
the coordinate axes. The limiting case of (2.2) when p = 1, defines the class
Aq; that is, the set of weights w such that

[w] 4, := sup <][ wdx) esssup(w 1) < 4-00.
Q Q Q
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This is equivalent to w having the property
Muw(z) < [w]a,w(x) a.e. v € R",

where M denotes the maximal function:

= Sup][ |f(y)] dy,

Qox

and the supremum is taken over all cubes Q C R™ with sides parallel to the
coordinate axes containing the point x. The centered version with respect
to euclidean balls of this operator is defined as

MCf(z) = sup ]{3 L wla

r>0

Since we are considering the euclidean space R™ endowed with the Lebesgue
measure, both maximal operators defined above are pointwise comparable,
up to a dimensional constant.

The other limiting case of (2.2) corresponds to the case p = oo. Although
it is very convenient to define this class, also introduced by Muckenhoupt,

by
As =] 4,

p>1

it is also characterized by means of this constant

[w]a,, = sup / M(wxq)

(see [HPR12] and [HP13]).

An important feature of A., weights is the so called reverse Holder in-
equality (RHI) which can be seen as a selfimproving property of the local
integrability of the weight w. More precisely, the following Theorem was
proved in [HP13] (see also [HPR12] for a simpler proof).

Theorem 2.1. Let w € As. Define ryy, = 1+ Wl]f,—l'
cube (), we have that

(2.3) ]lerw <2 <]£2 w>Tw.

We will need some additional well known properties of A, weights that
we include here. Using Holder’s inequality with p and its conjugate p’, we
have that for every cube @ and every g > 0,

w0 [ewe (s [ron)

Specializing inequality (2.4) for ¢ = x g we obtain that, for any measurable
set & C @, that

E| _ s (w(E)Y?
(25) 1 =, <w<@>> |

Then for any
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Remark 2.2. We remark here the interesting fact that the condition above
characterizes the so called A, ; condition, which is strictly weaker than A,,.
For example, (M u)!~P belongs to A, 1 but not to A,. Moreover, the [w]4
constant, defined as the best possible constant in the inequality

() =y

could be strictly smaller than [w]4,. This smaller class seems to be the
right class to study weighted Poincaré inequalities in the context of Lorentz
spaces (see Section 9).

p,1

We also will use few times the class of pair of A, weights.

Definition 2.3. Given a pair of weights (u,v), we will say that it belongs
to the A, class and denote (u,v) € A, if

(2.6) [u,v]a, = sup <]{2 ud:c) (]é T d:c)p_l < oo0.

The following well known result will be used

1
(2.7) 1Ml ou) Loy = [, 0] 47,

with a dimensional constant in front.
It is also well know that

1 1o v
(2.8) @’/Qf dx < [u,v]Ap (u(Q)/prv d:z:) f>o0.

We finish this section by setting some notation related to certain function
spaces and normalized local norms. We will consider first some basics about
Lorentz spaces. Let p be a Radon measure on R™. A function f belongs to
the Lorentz space LP9(u), 0 < p,q < o0, if

oo 1/q
_ ", 1p)? dt
s = |p [~ (tnte R 1> )" §] 7 <o
whenever ¢ < oo, and

sup tp{z € R": |f(z)| > t}'/7 < o0,
0<t<oo

if ¢ = co. Since we will be dealing with the measure u = wdzx given by a
weight, we will denote

[z < 1 f g < cllfll g

We also have Holder’s inequality in this setting (see [KS10]):

(2.9) / @) i) < A gy 17 -

We will consider the case ¢ = 1 and ¢ = oo and the following notation for
local averaging will be used

: = Z(w(lQ)w{m €Q:g(x) > t}) w dt.

g

,1 wdx
Lp (Q, w(Q)
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LPa(Q, %4%)

There is a class of weigh‘lcg‘ attached to some of these spaces denoted by
A, that was introduced by Chung-Hunt-Kurtz in [CHK82] and that will
be used. We will denote by A, 1, p > 1, to the class of weights w for which
the quantity

1
@100 fola, = (f wt) ar) ]
Q Q w

is finite. See also [KK91, p. 145]. Observe that

and similarly for g‘

p

L0 (Q, ¥4¢)

[w]a,, < [w]a,.
and then A, C Ap 1 with strict inclusion since if My is a.e. finite and p > 1,
it is known that (Mu)'~P € A, with
[(Mp)' P a,, < cn,

although in general
[(Mp)!7P)a, = <.

It is also known that 4,1 C (1,5, 4q-

3. THE PROOF OF THEOREM 1.5 AND ITS COROLLARIES

Now we are able to present the proof of the main result of this section,
Theorem 1.5, providing a general self-improving result related to a generic
functional a.

Proof of Theorem 1.5. We recall that the goal is to prove the inequality

1

1 P s
(3.1) (w(Q) /Q If—fQ!”wdw> < cusllal*a(Q),
provided that
1
(3.2) @/Qrf—fmsa@),

and that the functional a is such that for some p > 1 it satisfies condition
SD;(w) from (1.9) with s > 1 and constant ||al|.

We will assume that f is bounded. As a first step to prove (3.1) we claim
the following a priori estimate

1
1 lf = fal” )p
3.3 sup ( wdx | < oo.
33 @ Jo @y
To do this we consider first an approximation
1 f— fQ p >1/p
X. =sup < / wdx .
: Q w(Q) Q aE(Q)

where a.(Q) = a(Q) + .

We need the following lemma. Recall that the hypothesis on the functional
a is that it satisfies a smallness preservation condition. A difficulty is that
the the perturbed functional a. has a worst smallness exponent.
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Lemma 3.1. Let w be a Ax and let a € SDZ(w) s > 1. Suppose that
{Qi} € S(L), then there are constants C and S larger than ||a| and s
respectively such that

S alQru(@) 2o (1) w@ruiar

Proof. We compute the sum from the SD;(w) condition:

(Z Qe Qz Qz > : = (Z(G(Ql) + 5)pw(Qi)) :

7
1

<Za<@»i’w<@i>> 4 (Z dﬁv(@») p

% %

IN

< 11:aQu(Q)F +ew (B

where Eg =: |J; Qi C Q. Recall that by the smallness condition we have
that
K?!

|Eql <

By Holder’s inequality and the RHI for w Wlth the exponent r from Theorem
2.1 (since w € Ax),

w(Bq) <2 (féj) w(@).

Now, since 1’ & [w]_, we obtain

w(Eg) <2 <L> w(Q).

Putting things together

1
© L2 .
Zae Qz Qz = T1/s (Q)’LU(Q) 1/pr w(Q)
la 27
a p 1
< max{ 12l 20 o (@ui@)
1
max{||al|, 27 } L
< W%(Q)W(Q)p
The proof of the lemma is now complete. O
lf—fol

We consider the local Calderén-Zygmund decomposition of PR(a) relative
to Q at level L on @ for a large universal constant L > 1 to be chosen. Let
D(Q) be the family of dyadic subcubes of ). The Calderén-Zygmund (C-
Z) decomposition yields a collection {Q;} of cubes such that Q; € D(Q),
maximal with respect to inclusion, satisfying
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1 |f — fol
(3.4) L < dy.
Then, if P is dyadic with P D Q;
|f — fol

3.5 — | ——=dy <L
(35) Pl Jp aQ)
and hence

1 |f — fql
3.6 L < dy < L2"
(39) Q1 Jo, (@

for each integer j. Also note that
{93 €Q: My ('f @%‘X@) (z) > L} = UQj =: Qp,
e j

where Mg stands for the dyadic maximal function adapted to the cube Q).
That is,

ME(f)(x) —SUP][ fy)dy z€Q,PeDQ).
Then, by the Lebesgue differentiation theorem it follows that

@ fol ., .
Q) <L a.e. x & Qy,

Also, observe that by (3.4) (or the weak type (1,1) property of M) and
recalling our starting assumption (3.2), we have that {Q;} € S(L), namely

o |—|UQ31< 19l

Now, given the C-Z decomposMon of the cube @, we perform the classical

C-Z of the function J;;Qf? as
(3.7) J;E_(C‘;f = 9o + bg,

where the functions gg and bg are defined as usual. We have that

LZg(Qf()Q ) x ¢ QL
(3.8) 90(x) =
o J;_(C‘Qf)Q , €, xeQ;

Note that this definition makes sense since the cubes {Q;} are disjoint, so
any = € 7, belongs to only one @;. Also note that condition (3.6) implies
that

(3.9) go(@)| < 2"L
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for almost all x € ). The function bg is determined by this choice of gg as
the difference
_f—fe

B as(Q) —o

but we also have a representation as

(3.10) bo(a) =) (f(a) - fczz) XQZ Z Qi

%

where bg, = (f(z) — sz) (1Q>XQ1( ).

Now we start with the estimation of the desired LP norm from (3.3).
Consider on ) the measure i defined by du = w(XQ) Then, by the triangle

inequality, we have

<w<1c2> o f(é?’ m) l

IN

9@l ey + 10Q | e ()

1/p

1
< "L+ / bo. |P wdx
w(Q) QL;|QJ|

A

Let us observe that the last integral of the sum, by the localization prop-
erties of the functions bg,, can be controlled:

/QL\Zj:ij\pwdx < Z:/Qilej‘ wdx
_ 1 as(Q:)Pw(Q;)
B aa(Q)pZL»: w(Q;) /Z

p
X Zas Qz z

where X, is the quantity defined by
f—1a

1 P 1/p
X, =sup ( / wd;v) .
Q \w(Q) Jgl| a:(Q)
which is finite since f is bounded and a.(Q) > . Then we obtain that

1 If — fol? >, 4= (Q)Pw(Qi) \ 7
(3:11) <w<@> 0 a(Q 0 (QPw(Q) ) |

Therefore, using the result from Lemma 3.1 for the modified functional
a(Q) + &, it follows that

f _fQi b
ae(Qi)

wdx

1
wdac)p <2"L + X. <

1 |f = fol? . Clal

This holds for every cube @, so taking the supremum we obtain

Cal

X. <2"L + X. T max(sr}
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Choosing L large enough independent of ¢, it follows that
Xe S o Jal-

for any €. By the monotone convergence theorem, we also conclude that
(3.3) holds, namely

1
(3.13) X = sup < L i/ — Jol” wd:zc) " <0
Q \w(@Q) Jo a@)

Once we have proved that X is finite, we can proceed to the precise quan-
titative estimate (3.1). The steps are exactly the same as before, but using
directly X instead of the approximation X, and therefore obtaining the ex-
act same inequality (3.11) but with no €. Since we are now dealing with the
original functional a, we use the smallness preservation condition to obtain
a better version of (3.12), namely

el
/s’
Now we choose L = 2e max{||a||®,1} so the above inequality becomes

X<2"L+X

/
X < 22efall* ((2)/*) < €2 sllall,

using the elementary fact that ((26)1/ S)I <'s. This is the desired inequality

(3.1): 1
<w<1@ /Q . fQ|pwdx>P < scqllala(Q)

for any cube Q.
O

We may now proceed to the proof of Corollary and 1.8. Once Theorem
1.5 is proved, the key step is to verify that the corresponding functionals
satisfy the smallness preservation condition.

Lemma 3.2. Let w be a weight, L > 1,0 < p < 0o and let a(Q) defined as
in (1.10). Then a € SDg/a(w).

Proof. Let {Q;} € S(L). If 2 < 1 use Hélder’s inequality and convexity,

Za(Qi)pw(Qi) < Ze(Qi)paM(Qi)
= Z|Qi\%H(Qi)

(2

=

(Zm) ” (ZMQJW’)
< (@)ng:ﬂ(@i)

P

=

IN

- (1) weru@ = (1) " aQre@.
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If 22 > 1 use that 4(Q;) < p(Q) and convexity. O

Another interesting example is related to the classical unweighted Sobolev
exponent p* given by

1
— 1<p<n.
p*

D=

1
n

As before, consider the functional from (1.10) but in the unweighted version
and for o = 1:

(@ = 1@ (51(Q) "

Then if p < ¢ < p* we have that a satisfies the SD{ condition with s > 1
given by

1 1 1
s q pt
Indeed, this follows from Holder’s inequality applied to the exponent r =
P>
P*—q

> a(Qi)Q|

7

ZlQill*fw(Q»%

g
*

(?Qi')l_; (;u@i)”;)p
() (zer)

(; M(Qi)) ;

< () @t = (1) a@rial

IN

®

IN

The observation above can be generalized as follows. Given a functional a

we define the largest exponent for which a satisfies DP” with bound ||a|| < 1,
namely

> a(Q) Qi < a(@)P1Q)-

%

Then if ¢ < p*, a satisfies the SD? condition with s > 1 given by

1
p*

»
| =
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Indeed, if t = &

q

dla@)lQl = Y a@) Qi Qil7

(grara) (s
(a1 1Q))" (‘Q’>1'
el (1)

With the previous estimates on the functional a in hand, we can now
present the proof of the corollaries

IN

IN

IN

The proof of the two weight analogue follows similar steps

Proof of Corollary 1.8. The proof follow from the well known (1, 1) Poincaré
inequality

1 1
@,/Qf—fm <t Q)M/me:)ux.

We refer to Theorem 11.3 in the Appendix (Section 11). If we combine that
inequality with the (two weight) A, condition property (2.8), we have that

1 1 1/p
— =1 Scu,v”ﬁ@(/ prvdac) .
a1 L 1f ~ sal < el 1@ (5 [ 1971
Now we just need to consider the functional
1 1 1/p
a = [u,v|5 £ /vadx> .
(@ = 013, 1@) (555 [ 19

and apply Theorem 1.5

4. THE KEITH-ZHONG PHENOMENON

Here we present a result in the spirit of the work of Keith and Zhong on
the open ended property of Poincaré inequalities

Proof of Corollary 1.11
then

We have to prove that if 1 <p < py and w € 4,

: g =, 1 1
<w(Q)/Q|folpw> < cp(cppomlw] 1) Q) (w(Q)/Qgpw> .
Let us define the functional

@ = (114, )@ (25 [ ) e

Then a € SD]' (w) by Lemma 3.2. Hence, by Theorem 1.5 we have that

1

<U)(1Q)/Qf_fQ|p0wdx>p0 < Cra(Q).
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We rewrite the last inequality as

@) [ 1 foPruds < € (fula, @ | g wd.
Q Q
As already mentioned we use ideas from the theory of extrapolation with
weights as can be found in [CUMP11]. Let p € (1,pg) and let w € A,. We
will use the so called Rubio de Francia’s algorithm. For any h € LP, we
define

oo
1 MF(h)
=3 g0
2o M 0
The operator R satisfies the following three conditions.

(A)  h<R(h)
B) MR w) < 2[1A]l Lo (w)

(C)  [R(W)]a, < 2[IM||Lr(w)
Then we have, for some « > 0 to be chosen later, that

([ 15 soPwac)” = ([ 17~ sol Rixas) " Rixgo)™ was )
Q Q
< ILII

by using Holder’s inequality with the pair ¢ = %0 >1land ¢ = (%0)’ = pf—ﬂp,
where

1/po
I = </ |f — fQ‘pOR(XQg)fapo wdx>
Q

and

[

II = </Q R(XQg)“W?O)/ wdx) (%)

We control the first term I by choosing a = p(;—;p > 0 and defining

vi= R(xqg) ™ = R(xqg) "
Now we claim that v belongs to A, since

bo—p
(0], = [R(x@9) ™" P wla,, < C M0 [w]a, < Clw]f " [w]a

Lr(w) P p°

Indeed for any cube and by the definition of A;, we have that

(pn— _ ~(po—p)
][C;R(XQQ) (Po=P) ydx < [Rxqgly, p<]{3 R(xq9) dx) ]éwdgc.

by setting ¢ = gg:; > 1 and observing that ¢ = 2;?:11. Then, Holder’s
inequality yields

/

1- — /
]é (R(XQQ)_(pO_p)w> e = ]é R(xqg) 71 w' ™7 dx

= (]é R(xq9) d:c) rot ( ]é ol dx)po—ll_
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Hence, combining all previous estimates, we have

[R(xQ9) ™ P wla, < [Rlxeo)h " wla,
< P M, fula,
Po—p
<

Cppo,n W] Ap [w]a,
po—1

= Cppon [W] Xp_ '

by (C) above.
We can apply now (4.1),

po—1

1/po
13<w@mﬂw@wa@(éw%uwr%%wM)

po—1 1/po
< co(cppom [w]j;l ) Q) </Q q* wd:r) ,

by property (A) above.
For the second factor II, note that by the choice of a, we have that

/
Po — Po—P _Po_ _ 1
= = n
a<p) Po  Po—p and

pPo—P

) <2 (/ gpwda:> o
Q

1T = (/Q R(xqg)" wdw) !

SIS

by (B) above. Therefore, collecting estimates and noting that %+% = pio,
we obtain
1 1
(/ |f — fQ|pwd:z:)p < CUQ) </ gpwdx)p
Q Q
O

5. POINCARE-SOBOLEV TYPE INEQUALITIES

In this section we will present the proof of Theorem 1.12. Here the key
step to obtain meaningful Poincaré type inequalities is to find nontrivial
examples of functionals a and its corresponding indices p;,. To that end, we
will consider functional of the form

1 1/p
0@ =@ (@)
and assume that the weight w is in A, for some 1 < ¢ < p < n. Note that
this includes both endpoint cases ¢ = 1 and ¢ = p. The idea is that we
will use the fact of w being an A, weight to build the specific functional for
Poincaré inequalities. But assuming a stronger condition, namely w € A,
gives us better estimates for the index pj,.

The following definition proposes a suitable index p* associated to the
values of p, ¢ related to the geometric properties of the weight w. In addition,
we will consider an auxiliary parameter M > 1 (that will also depend on w)
to achieve the desired smallness preservation.



WEIGHTED POINCARE 25

Definition 5.1. Consider two indices p,q such that 1 < g < p < n. For
M > 1 we define p}; := p(n,q, M) by the condition
1 1 1

5.1 - -
(5.1) p  py ngM

Note that pj, is smaller than the classical Sobolev exponent, namely the
sharp one corresponding to the Lebsegue measure case:
n
p<py<p=-—L"— 1<p<n
n—p
The next lemma contains the main estimate for a functional of the form

(1.10) for ae = 1.

Lemma 5.2. Let 1 < ¢ < p<n, and let a(Q) defined as

1 1/p
a(Q) =1 — .
Q=@ (1@ )
Letw € A, and p}, defined as in (5.1). Then for any family {Q;} of pairwise
disjoint subcubes of Q such that {Q;} € S(L), L > 1, the following inequality
holds:

*
Pm

62 YaQyriu@) <l (1) aeriu@.

i
This condition says that the functional a “preserves smallness” for the ex-
1
ponent py, defined in (1.13) with index nM' and constant [w]z‘;M. That is,
nM’
ac SDP?W (w).

Before proceeding with the proof, we recall from (2.5) that for A, weights
we have the geometric estimate

(i) =iy

valid for any subset £ C Q.

Proof of Lemma 5.2. Let M > 1. For simplicity in the exposition, we will
omit the subindex M and just use p* instead of p},. To verify the smallness
preservation for the functional a, we compute

> a@) w(@Q) = ZM(Q@')% ((an)l>

7 7

P a4\ nant P p*
< Wl (25) L@ it
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nM’

o > 1.

Now, since p < n, inj[l < 1 and we use Holder’s inequality with t =
Then

*

Sa@rua) < (* Am ( )1,(2\@)&,
. < Aq|c2|>

o o1\
= @l (Q*M(@)p (L)

P *

O

Proof of Theorem 1.12. The proof of this theorem is just the proof of Theo-
rem 1.5 combined with Lemma 5.2 with a different choice of the parameters L
and M there. More precisely, Lemma 5.2 says that the functional a satisfies
the smallness preservation property for the index pj}, defined in (5.1) With

exponent s = nM' and norm |a|| = [w] ”‘;M If we choose M = 1+ log[w ]
then the proof of Theorem 1.5 produces the estimate

<U)(1Q)/Q ’f _ fQ|P}§/[ wda;) Py < 02n+18 HaHs a(Q)

< Ml o(Q)

< C2""na(Q)

where we used that tﬁ = e and assumed that [w] A, = €%. In the contrary
we can use Theorem 1.2 since the functional a satisfies the Dp(w) condition
1.2 with p = pj, (this is nothing more than Lemma 5.2 with L = 1) and
since w € As. Now, the bounds obtained in the proof of Theorem 1.2 are
not precise but are given by ¢([w]a,) with increasing ¢ and hence the result
holds also in the case [w]4, < e?. More precisely, we use the fact that the A,
condition is an open ended property: any A, weight is also an A,_. weight
for a small value of € > 0 depending on w. Hence, the functional a will also
satisfy a Dy i5(w) for some 6 > 0. Then, Theorem 1.2 provides a weak
estimate for the exponent p}, +d > pj,. This implies, by Kolmogorov’s
inequality, the desired strong estimate.

O

Now we can derive the result in Corollary 1.13 as follows.
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Proof of Corollary 1.13. Let us start by using the unweighted (1, 1) Poincaré
inequality as in Corollary 1.8. Since the weight is in A,, we can build the
functional a in the same way and obtain the starting point

L @) — salde < Clui; 44 (5 | v dx)l/p.

a(f,Q) = C[w]ipg(Q) <w(1Q)/Q —— dl’)l/p

At this point, we have already paid with the unavoidable quantity [w] ﬁp
to build the functional a. Now, knowing something extra about the weight,
that is, w € Ay, allows us to reach a higher exponent. Theorem 1.12 is
applicable, so we obtain the desired inequality:

( /If fcg!pwwdw>l < [w ]i Q) <w(1Q)/Q\Vf|pwdx>l/p.

O

where

6. USING THE GOOD-A
In this section we will provide the proof of Theorem 1.14.

Proof of Theorem 1.14. Although we have introduced the notation ||a|| p, (w)
in the statement of this theorem, here the SD) norm of the functional a is
assumed to be equal to 1 and therefore there is no chance of confusion.
We choose then to simplify the notation and simply write ||a|| instead of

||aHD7-(w)
Now we proceed with the proff. Fix a cube @), we have to prove that

wife € Q:1f() ~ fol > 1)) ol
o) < (cllall [ul}

with ¢ independent of @, ¢ and [w]4,
Now, for each t > 0, we let
={z € Q: M(f— fo)(z) >t}

where M will denote in this proof the dyadic Hardy—Littlewood maximal
function relative to (). Then by the Lebesgue differentiation theorem

{r e :|f(z)— fol >t} C Q.

We will assume that ¢t > a(Q) since otherwise (6.1) is trivial. Hence

£ > a(Q |Q|/!f fol

and we can consider the Calderén—Zygmund covering lemma of |f — fgf
relative to @ for these values of t. This yields a collection {Q;} of dyadic
subcubes of (), maximal with respect to inclusion, satisfying €2; = U;Q; and

1 n
<‘Qi,/Qi!f—fQ\§2t

(6.1) a(Q)"

p
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for each i. Now let ¢ > 1 a big enough number that will be chosen in a
moment. Since €, C €}, we have that

w(Qge) = w(Qge N Q)
= > w({zeQi: M(f - fo)(x) > qt})

%

— Y w(r € Qi M(f - fo)xa)(@) > at})
i
where the last equation follows by the maximality of each of the cubes Q);.
Indeed, for any of these i’s and = € @);, we have

M(If - folxo)(@) = max{ sup ][If fol, sup ][If fal}

PzGPG’D(Q) PIGPED(Q)

= sup ][ | fl
P: zEPED(Q)

= ((f — fQ)xq.) (),

since by the maximality of the cubes @; when P is dyadic (relative to Q)

containing (); then
1
\P/p’f —fol <t
On the other hand for arbitrary x,
1f(z) = fol < 1f(@)—fal+1fo — fail

1
< 1)~ ol + g7 [V~ fa
< |f(x) = fol +2"¢

N

and then for ¢ = 2" 4+ 1
w(Qqe) <Y w(kEg,),

where
Eq, = {.1‘ €Qi: M((f - fQi)XQi)(x) > t}'
Let € > 0 to be chosen in a moment. We split the family {Q;} in two sets
of indices I and II:

ielifa(Q;) <et and ielIlif a(Q;) > et

Qg1 <Z w(Eg,) <Y w(Bg,)+ Y w(Eq,)=T+II.

iel iell

Then

Sin(lje w € A, we use that M is of weak type (p,p) (with norm bounded by
P ; .
[w] Ap) to control the the size of Egq,:

wla,

w(Be) < —

NP wdz w(Qi).
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And here is where the condition (1) of the functional comes into play. Since
we are assuming that a preserves smallness, that is a € SDJZL(w)7 we can
apply Theorem 1.5 on the cube @Q; to obtain

U Qi) < ealula, & w(Q0),

P tp

(6.2) w(EQ;) < cnfw]a

We conclude that

I < cplw]a, e w().
For II we use the hypothesis (2) on a in the theorem (which is simply
condition Dy(w) without smallness preservation). We have that

1< Y @)<Y (@) v

iell iell
1 T
trer Z a(Ql)rw(Ql) < !g!r a(Q)T’UJ(Q)

()

Combining all these estimates we have that for ¢ = 1 + 27,

r w(th) T D w(Qt) ||a||7"qr r
(qt) ) < ¢t [w]a, € wQ) T e a(Q)
for t > a(Q). Observe that if we choose € < 1, the same inequality holds for
t < a(®). Combining, we have the following inequality for ¢ =1+2",¢ >0
and 0<e<1

w (1) w(§) | lal"g"
qt)” <q"t" [wla, € + a(@Q)" t>0.
gy ST g e @)
To conclude we use a standard good—A method. For N > 0 we let
w(§k)

P(N) = 031<pNt w(Q) ’

which is finite since is bounded by N". Since ¢ is increasing we obtain that

O(N) < o(Nq) < ¢" [w]a, € o(N)+ ”Z,’,Ta(Q)’”-

We now conclude by choosing € such that

q" [w]a, € = -,
which is equivalent to
1 1 r 1
I D
2vqr [w] Ap

We conclude the proof by letting N — oo.
O

The proof of Lemma 1.18 below provides a precise value of r for the D, (w)
condition satisfied for a functional a of the form (1.10) with o = 1.

Proof of Lemma 1.18. We will use again that if £ C @

(i) =iy

As before, for simplicity in the exposition, we will use p* instead of pj,.
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Then,
* . P’
Za(Qz)p*w(Qi) = ZN(Qi)% ( E(Qll)_1>
p i w(Qi)r 7
Qi
= w(Qi) » ( 1 )
zi: w(Qi)
p* Qi B
= w(Qi) » ( 1 )
zz: w(Q;)a

e lQ \ " v
< [w] q( 1> i)?
A\ (@) 2
(e T e
(22 o
Y \wi)
= (0] a(Q) w(Q)

1

e
and hence |[|a| < [w]}!

O

Proof of Corollary 1.15. Let us consider again inequality (5.3) as a starting
point. Then we have that

0) — saldr < Clulh, 6@ (o [ 19 spw ar)
Q w(Q) Q

Define the functional

1 1 1/p
a(f,Q :sz"EQ(/ Vfa:pwdx> .
(1@ = O} 4@ gy 194
By Lemmas 3.2 and 1.18, we have conditions (1) and (2) from Theorem
1.14. Taking into account the value of ||a|| computed above, we obtain the
desired estimate by using the truncation method. U

7. A MIXED POINCARE INEQUALITY AND APPLICATIONS TO A; WEIGHTS

We present here a different approach to the problem of weighted Poincaré
inequalities and present the proof of Theorem 1.21 and its consequences.
We will use the following very simple lemma.

Lemma 7.1. Let pu be a finite measure such that supp(u) C Q@ C R™. Con-
sider a subset E C Q such that u(E) > Au(Q2) for some A € (0,1) and a
function f vanishing on E. Then, for any constant a € R, we have that

1
(7.1) lallzy < 35 1f — allzg
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Proof. A straightforward computation shows that

lally = w()1lal
< @B [ 11—l du
1

IN

1
(X)l/qnf_aHLZ
O

Now we are ready to prove the precise weighted Poincaré-Sobolev inequal-
ity from Theorem 1.21.

Proof of Theorem 1.21. The goal is to prove inequality (1.16):

</Q = aul” “’dw)”l* <¢C </Q VP (W)pw d:c);.

The proof of this inequality is based on the following interesting argument
used in [CW85, DMRT10] in a different context. We will use a relatively
known equivalence between (1,1) Poincaré inequalities and fractional inte-
grals. More precisely, since the (1,1) Poincaré inequality is true, the by
Theorem 11.3 in the Appendix we have that

</Q () = fal” dﬂ>i’ <C /Q IV F@)(Mp(y)) dy.

We start by showing that this inequality implies a similar inequality without
the average fg when restricted to certain class of functions with a vanishing
condition.

Claim: Let F C @ be any measurable subset of the cube such that

w(E) > @ For any function f vanishing on F, we have that

i
/ n/ 1
e (firrean)” <o [ wanm)
Let us define the measure ;1 = wxgdz. Then we have that

1
1y < 1 = Sally + el < (14217 = fall

by a direct application of Lemma 7.1 with a = fg. Now we apply inequality
(11.8) from Corollary 11.4 to obtain

Il 17 = faluy % | I9SIOMu) dy

prove the claim and conclude that inequality (7.2) holds.

Now we proceed to an intermediate Poincaré-Sobolev inequality with the
pair of exponents (p*,p). Let us denote by ¢g_ and g4 the positive and
negative parts of a measurable function g. Since we are integrating over a
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cube we can use that, for a given function f, there is a real number A such
that

(7.3 [ @ = do = [ (@)= 27 do
Q Q
We also have (for the same \) that for any ¢ > 1,
Q={z€Q:(f(z) - NL=0U{zeQ: (f(z) - NI =0}
We can assume that w({z € Q : (f(z)—A)L = 0}) > w(Q)/2 and then the
function (f — A)4 satisfies the hypothesis from the claim above. Choosing
q > 1 such that ¢ = 2 = y, we apply (7.2) to obtain

1
! 1
U

</Q(f ‘A)T"“y S /Q!f — AV f(Mw)

[ 18 =t v B
Q

IN

1

(f 1 =) ( / rvﬂ“M;‘jj)’”w)”

1_ 1 ;
o= g We obtain that

IN

n(p—1)p

1
npp-1) — P*and 5 —

Since (¢ — 1)p’ =

1

</Q(f($) — N w(z) dx) ” < (/Q V()P <W>pw d$>11)

By the relation in (7.3), the same inequality holds for the negative part
(f — A)—, so we obtain the estimate

(7.4) 1f = Alzz S IV Illze
1

MC !
where v = %

P
) w and p = wygdr. We also have, by Jensen’s
inequality, that

A= fouwllz = w(@YP A= fo.ul

w 1/px — f(x ’U)(l') l’
< w(@) /Q A= @) d
< w@ ([ hsop g ar)”

< 1= Al

Collecting all previous estimates, we obtain the desired result. Note that
1 = ol < IF =Ml + 1A = fowllg S 205 = Xl

We complete the proof by applying (7.4) to obtain the desired estimate

(1.16):
p* c % p
s e (222
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O

7.1. The case of A; weights. Now we can derive as a consequence the
proof of the A; result.

Proof of Corollary 1.22. We start from (1.16) proved above using again that

(vreayt/n' \ P L
v= | — w to rewrite 1t as:

w

1

(st 1 onte)” 5 o (o /, !Vf\pvy

1
w(@))”" i (1 Z
< (=or) QM (5 [ IV
( Q| w(Q) Jg
since Il) — 1% = % Then, we can control the average by using the maximal

function to obtain that

(50 / |fo,w\P*w>”l* < it Or) Q) (1 / ywm)’l’
s 1 (g [ wrr (%}”)w)

], £(Q) (w(l@ /Q \Vf|pw)’1’.

The proof is complete. O

N

Remark 7.2. We remark that in this case, we can see that the measure w dx
behaves like the Lebesgue measure at least for the range of local integrability
on the left hand side.

The next question here is regarding the sharpness of the exponent on the
Aj constant in the above inequality. We have the following result related to
that issue.

Proposition 7.3. Suppose that inequality (1.17) holds with some power on
the Ay constant, namely

1
(7.5) (w(@ /Q 1 fou
Then B > %.

P*w)pl* < clul} 4@ (5705 | IVflpw>;-

Proof. The conclusion follows from the analysis of an specific example. Con-
sider the cube in R"™, n > 2, defined as Q = (—1,1)". For § € (0,1), define
the weight w by the formula w(z) := |z[°~". Then w satisfies that [w]a, ~
and w(Q) ~ 3. Now fix 0 < € < 1/2 and define the set E := Q \ (—2¢,2¢)".
Define on @) a piecewise affine Lipschitz function f such that f(z) = 0 for
all z € E and f(x) =1 on (—e,¢e)™.
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Inequality (7.5) implies, by Lemma 7.1, that the same inequality holds
without the average:

(50 / !fl”*w)pl* <}, 4@ (555 / er|Pw>}’.

Now, a simple computation on the LHS shows that

1
(s fyr) 2 (o )2
— w 2 x x 2 epx
w(Q) Q (—ee)m

On the other hand, the RHS involving the gradient can be controlled as
follows

8o (L [ v >; < 50 )
[w]a, (Q)(M(Q)/Q| fre) = /<2e,2e>"\<e,e>" e

L
EP

B_l
0" p
Therefore, inequality (7.5) would imply that

S

s _

o ep
err <
~ B_l
) p

For a fixed ¢, this forces the condition 5 > 1/p. O

8. GENERALIZED POINCARE INEQUALITIES WITH POLYNOMIALS

The purpose of this section is to prove Theorem 1.24 related to the analysis
of Poincaré inequalities involving higher order derivatives.

A somewhat less-known result that we can use as a starting point, analo-
gously to (11.4), is the following higher order inequality. There is a constant
C > 0 such that for any cube Q,

1 uQ)m
60 g [ 10w - rewldy <G [ 9nsay,

QI Jg Rl Jo
for some polynomial 7 depending on f and () of degree at most m—1, where
m is a positive integer. Here V™ f = {D?f}, =y and [V f[ = > [D7f].
Estimates of this type can be found for example in [Boj88].

Note that for this kind of inequalities involving higher order derivatives,
we cannot make use of the truncation method as in Proposition 11.7 or
Proposition 11.8. We present in this section a variation of Theorem 1.5
adapted to the oscillation with respect to “optimal polynomials”.

Before we present the main result of this section, a few words on optimal
polynomials are needed. We borrow the following definitions and properties
from [FPW98] which are based on [DS84]. Given a cube Q C R™ and an
integer m > 0, we consider the space P, of polynomials of degree at most
m in n variables endowed with the inner product given by

< f,g >Q:—]£2fgd:1:.
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There is an orthonormal basis with respect to this inner product that we

will denote by {¢4}, being @ = (au,...,a,) a multiindex of non negative
integers such that |o| = a1 + - -+ 4+ oy, < m. An important feature is that

1 1/2
(8:2) 6z~ < C ( / |¢r|2dx) _c,

Ql Jg

since the space P, is finite dimensional and therefore all norms are equiva-
lent. Let Py the projection defined by the formula

Pof) =3 (@ /Q f@dm) br.

We clearly have from (8.2) that

(8.3) | Pofllz= < chjé I

where N depends on m. Moreover, as it is the case when m = 0 and the
projection is over the constants, we have the following optimality property:

1/p 1/p
it (]é |f—w|p> ~ (i) !f—PQf|p> .

We now proceed to present the proof of the announced result.

Proof of Theorem 1.24. The proof relies on a Calderén-Zygmund decompo-

sition adapted to the function % similar to the technique used in

Theorem 1.5. The difference here is that we do not decompose the func-
tion into the “good” and “bad” parts gg and bg. We only work with the
decomposition of the level set.

More precisely, for a given L > 1, we decompose the cube @ into a
family of dyadic subcubes maximal with respect to the inclusion satisfying
inequalities similar to (3.4), (3.5) and (3.6), namely

1 |f — Pofl
8.4 L dy.
(8.4) Sl Jo, a@
Then, if P is dyadic with P D Q;

1 |f — Pofl

8.5 o | A dy <L
(8:5) rPr/p a@ =
and hence
8.6 L dy < L2
(86) = @il Jg, (@) =

for each integer j. Also note that

{:c €Q: Mg (!f;(gngle) (z) > L} = UQ]- = Q.

Then, by the Lebesgue differentiation theorem it follows that

|f(x) — Pof| - A
TG <L . géLjJQ].
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As before, we conclude that the collection of maximal cubes is L-small ac-
cording to Definition 1.3, since we have that

|U@J|< 19l

We start by splitting the integral

(o [, oy o) < <w<1@>/Q\QL Ww)y

* (w(l@ /Q : &g?pﬂpw‘”) E

= I+1II
By the Lebesgue differentiation theorem, we have that I < L. For I, we

have that P f|p e P f|p
L2 A Q
e o

For each j, let us split again the mtegral by mtroducmg the projection over
the smaller cube @; to obtain

/ |f = PofPuwds < 27! ( / |f — P, fPwdz + / Po,f — PQf|Pwdw)
Qj Qj Qj

Now, since Py, is a projection, we have that Pg,(Pqyf) = Pgf and there-
fore we can compute for any x € ; that

Po, = Pofl(w) < [Po,(f ~ Pofl(w) < C*f 11 = Pofl < C*2'La(@Q)
by (8.3) and (8.6). Therefore,
[ 1Pa,f = PofiPuds < 2P La(@Pu(Q)).

We define again the quantity '

1 p 1/p
o (g 5 )

After collecting all previous estimates and using the above definition, we
obtain

|f = PoflP 1 a(Q5)Pw(Q;) |f — Po, fI?
L, ey e < 2 Z o | e s
~|—2p_1+p”02prZw Qj)
J
>0 a(Qh)P w(Q;)
a(Q)?

1 Remark: Here we omit the details of proving that X is finite. The interested reader
may check that the arguments from the proof of Theorem 1.5 can be used here as well.

J

< or-lxp + 2p—1+pn02prw(Q)
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Therefore, using the smallness preservation of the functional a, we obtain

< L |f—PQf|pwd$>;' < abox <Eja(Qj>Pw<Qj>)i
Qr

w(Q) a(Q)P a(Q)Pw(Q)
D) %+n02
lall Lin
< 2 XL%«+%+(ﬁL

We can compute the integral over the whole cube Q:
1
1 — Pof|P » 1
w(@Q) Jo alQ)P

27 |a
< X L1/s
Now we proceed as in the proof of Theorem 1.5. Taking the supremum, we
obtain that

1
+ (27 T"C? +1)L

1
27 ||af L
X(l— Ty | S@TC 1L

1

Choosing LIU?” = (251/8 or equivalently L = 2e27' ||la||® we conclude that
/ 1 s
X < (@) @7"C? 4 1)2¢2 |a
s+1
< Cps27 al®.

9. POINCARE INEQUALITIES AND LORENTZ SPACES

In this section we will present the proof of Corollary 1.19 as another
application of Theorem 1.5 within the scale of Lorentz spaces where the
A, class of weights (see Section 2 for the precise definition) plays a role.
Indeed, there is an inequality for this class of weights very similar to (2.4) at
the scale of Lorentz norms. In fact, we claim that for a constant depending
on p

g g=0.

1
9.1 ][ gdx < clw]?
( ) Q [ ]APJ P 1(Q7 w(sz))

To prove the claim we use Holder’s inequality in the context of Lorentz
spaces together with the A, condition (2.10)

-1
LI e
]{ggw wdr < Li(Q LPOOQ,L“gr
1 1
(@, ude) llw ' oo @tz \ Jq w(Q)
1
< clwld,,flg Lr1(Q, 4 )
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Now, for the proof of Corollary 1.19 consider the following L' generalized
unweighted Poincaré inequality (for instance with the gradient):

(9.2) ]{2 (@) — foldz < cf(Q)]é gdz,

then by inequality (9.1), we have that

]é @)~ folde < cb@Q)ulf

g‘ wax :
et LR Q3555

If we let
a(@) = 4Q)||g

LrH(Q5gy)
the proof of Corollary 1.19 will follow from the next lemma.
Lemma 9.1. Let w be a weight and let 1 <p <n. Then a € SDy(w).

Proof. First observe that

Hg‘ LhL(Q, i) Hg‘ LP1(Q) (w(lQ)> -

Now, let {Q;} € S(L). Then by Holder’s inequality and convexity

3 a@)Pw(@) = Z|@ i

7

Lr1(Q

< (;m) (ZH e >W>
< (ZIQJ) (ZHQ‘ZJ(@))
< () Wy

where the last estimate follows from the following known lemma which is a
consequence of Minkowsky inequality (see [CHK82, Lemma 2.5] for a more
general version).

Lemma 9.2.

>l

<[l
Lr:1(Q;,wdz) Lp 1(Q,walx)

O

Higher order derivative estimates and Sobolev-Poincare estimates can be
considered as well but we will not pursue in this direction.
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10. THERE IS NO POINCARE INEQUALITY FOR all As, WEIGHTS

As mentioned in the introduction, we prove in this section a negative
result which is intimately related to the failure of the Poincaré inequality
(p,p) when p < 1. We will show that there is no weighted Poincaré (p, p)
inequality (p > 1) valid for the class RH. and hence for the class A, since
RH, C As. We recall that a weight w belongs to the the class RH, if
there is a constant ¢ such that

supwgc][w.
Q Q

This definition means that w satisfies a reverse Holder’s inequality for any
exponent and hence RHy, C As. We will use the following known lemma.

Lemma 10.1. Let A > 0 and let u be a measure such that My is finite
almost everywhere, then (Mp)~> € RH,, with constant independent of ju.

For the proof we will use that the following well known fact, if 0 < § < 1,
(Mp)? € Ay with constant independent of p (see [GCRAFS85]) . Now,

_5 %_ 1 s
(S‘ép(M“) ) ~ (g t7)
Cs %
JCQ(MN)édI

if we choose that 0 < § < 1 using that (Mu)? € A;. Now, since

| < ][ ][
we continue with

A
3
sup (Mp) = < <05][ (Mp)~° dﬂf) < C(S,A][ (Mp) ™ da,
Q Q Q

by Jensen’s inequality choosing ¢ such that A > ¢ if necessary. This finishes
the proof that (Mu)~* € RH,, with universal constant.

sup (M)
Q

IN

Proof of Theorem 1.26. Consider some fixed py € (0,1). We will use the
modified maximal operator

M.(f) = M(IfI)Y5, >0

Then we have, for some ¢, a > 0 to be chosen later, that

T 1
PO _ PO
(frr=em)™ = ([ 1 —orastaaiv sy msscualv ™)
< I.II,
by using Holder inequality with the pair ¢ = 2 > 1and ¢ =

1/p
-/ \f—G’pMe(XQVf\)_ap>
Q

= po , Where
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and

Jun

1= (/Q MAxangl)"p(’(%)/)W -

Now, by the Lemma above we have that M.(xq|V f])~*° belongs to RH
with constant independent of |V f|. Then we can use the hypothesis to
control the first factor above by

I

IN

) ( /Q |Vf’pMe(XQVf|)ap> "

e ( o)
- o ( / |Vfrp0)1/p

choosing a = % > 0.
For the second factor I, note that by the choice of «, we have that

/
ot (ﬂ) = 2P0 L — 1. If we consider ¢ = & € (0,1) then we have that

IN

Ppo P P—Po

= / Mxglv %))

W <o ([ )™

by the boundedness of the maximal operator. Therefore, collecting estimates

and noting that * + 2220 = L e obtain
p " pop  Po

( /Q - a|p°>1/p0 < CU(@Q) < /Q IVf|p°> "

11. APPENDIX: A GENERAL TWO WEIGHT POINCARE INEQUALITY FOR
THE WEAK NORM AND REPRESENTATION FORMULA

O

It is very well known that there is a close connection between Poincaré
inequalities and fractional integral operators. In particular, we will consider
the fractional integral operators defined for any 0 < o < n by

9(y)
11.1 I.(g9)(x) := / — dy
(11.1) @)= [
We will use the following lemma regarding the normability of the space
LP> from [Gra08]. Let u be any Radon measure on R"™. The weak “norm”

with respect to u is defined by
1
[fllpzee :=sup Au({z € R" : [f(z)| > A})7.

A>0

The space LI is the set of functions such that the quantity above is finite.

Lemma 11.1. Let p > 1. Define, for any f in the weak space LI, the
norm

(11.2) Il o= s () [ @) do

0<u(E)<oo
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Then we have that
(11.3) 1l < Mz < PIFlppee

11.1. The truncation method or “weak implies strong”. We also in-
clude here a general “weak implies strong” argument valid in our context
of Poincaré type inequalities. The following lemma provides an argument
to obtain strong estimates from weak type inequalities when the right hand
side involves a gradient. It seems that goes to the work of Mazja, however it
can be explicitly found in [LN91] in the context of R” and in [SW92] in the
context of Poincaré inequalities. We refer to [Ha01] for more information
about it.

Lemma 11.2. Let g be any nonnegative Lipschitz function. Suppose that
for some p > 1 there is a weak (1,p)-type estimate for a pair of measures
u, v of the form:

sup tu({a € B g(a) > )7 < [ |Vy(a)lav

Then the strong estimate also holds, namely
lollg 5 | (Vo(@la

Proof. Define, for any real parameter A € R, the truncation T3 (g) as follows:

0 if g(x) < A
Ta()@) = { glx)— A if A< g(x) <27
A if g(x) > 2A

Also define for each k € Z the set Gy := {x € R" : 2F < |g(z)| < 2FF1}. We
have that, for all 2 € Gry1, Tor(|g])(z) = 2¥ and sopV (Tyi(g)) C Gi. We
proceed as follows:

( / ng(m)du)l/p < kf 24 Gn) P

k=—o00
k=00

< Y Pula R Ty(g)() > 201
k=—o00
k=00

SEDSN W\ RO
k=—o00
k=00

< Y [ Ve
k=—o00 k

<

/ Vg(x)|dv
R
(]

The last result in this section is attached to the (1, 1) Poincaré inequality
for L':

1 1
o /Q @) = falds < CHQ5; /Q V(@) da
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This result is well known and can be found in many places: [WZ15], [SC02].
This estimate is also valid replacing the cube @ by any convex set 2 C R"
where the natural substitute for the sidelength of the cube is the diameter.
The proof of this result is well known but it has been shown in [AD04]

1
the very interesting fact that §diam(Q) is the best constant. Interesting

extensions of this result can be found in [HS94] and in [DDOS].

We show next that (11.4) encodes an intrinsic information by showing
that it is equivalent to the following statements connecting (p, p), weak or
strong. Poincaré type inequalities, pointwise inequalities involving fractional
operators and corresponding two-weighted estimates.

Theorem 11.3. The following are equivalent.
1) The following Poincaré inequality holds

(11.5) ]{2 £(z) — foldz < cacz)]{? 1V (2)d,

for any cube Q with a constant C' not depending on the cube.
2) The following pointwise estimate holds

(11.6) [f(z) — fol < Cali([VfIxQ)(z) Ve e,

where Cy, depends on the dimension n.
3) If u is any Radon measure on R™, n > 2, Q a cube, and f a Lipschitz
function, then

017~ fa)xall e <€ /Q V£ (@) (M) d.

4) If p is any Radon measure on R™, n > 2, Q a cube, and f a Lipschitz
function, then

1

my [ ) = sar )" <c [ 1901

Corollary 11.4. Let p be any Radon measure on R™, n > 2. Then there is
a dimensional constant C such that for an Lipschitz function f with compact
support,

(/ e du)’i’ <C [ VIO dy

The proof follows from (11.8) letting ¢(Q) — oo using that fg — 0.

Remark 11.5. There is a corresponding fractional version replacing 1) above
by

L 1@ - solaz < cu@rf 1vsa
Q Q

The corresponding fractional operator is I, in 2) instead of I; and the weak
norm in 3) is in L»-=">* in 3). The implication 3) = 4) is a consequence of
Lemma 11.2 and therefore is still valid.
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Proof. 1) = 2).

We will adapt the main ideas from [FLW96] (see also [LP02]). We will
derive (11.6) from (11.5) by using the Lebesgue differentiation theorem. Let
x € Q. Then there is a chain {Qf}r>1 of nested dyadic subcubes of @ such
that Q1 = Q, Qk+1 C Qy for all £ > 1 and

{z} =) Q«

k>1

Let fg, be the average of f over the cube Q. Then by the Lebesgue
differentiation theorem, there exists a null set N such that for all x € E :=
Q@ \ N we have that

[/ (z) = fol = | lim fo, — fol = 1> faun — faul

k>1

Now, using the dyadic structure of the chain, we obtain that

1
S ton—fal < Lig [, e
i 1 )
< 2 zkj on /Qk|w<y>|dy

- oy /Q V1)1 2 000 v 1)

Note that the immediate estimate |z — y| < /nl(Qx) produces an ex-
tra unwanted log factor when summing the series. We instead proceed as
follows. Let 0 < < n — a. Then we have that

S0 ) L__ka)—"mk(y)

|z —y[r=1=n

kn
‘ y‘n 1 77@ 22

for kg = min{j € N:2/ > \/ﬁ%} Then we obtain that

IN

o C 27 C L
< -
T T e
Collectmg all previous estimates, we conclude with the proof of the desired
inequality
IVfIXQ
@) gl <0 | 1 Iy, veeq

2) = 3).

We can compute the weak norm by using Lemma 11.1. More precisely,
we can apply Fubini-Tonelli’s theorem and (11.2) to obtain
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I(F = folxel v S IL(VIIxe)Xall e
H/ IV (®)lxe(y)

|- —yl!
S [ IKCaO VS0 o) dy

N

xo() dy|l|
L=

S | IKCXQOy VS dy

Now we estimate the inner norm of the kernel K(x,y) = W, T,y €

Q. By definition of the weak norm, we have

t>0

1
/ 1 n’
||K(‘ay)XQ||LZHoo = sup <tn 1% (iB €Q: o — g1 > t>>

1
w

< sup(ru(e e Qo —y| < 1)
r>0

< f}ilg(!B(y,r)\_lu(B(y,rD)’i’

S (Muly)
Recall that M*¢ denotes the centered maximal function. Therefore, collecting
all estimates, we obtain that

107 = faxallyyoe <€ [ 1V SIMA) doy

3) = 4).
This follows from Lemma 11.2.
4) = 1).
This follows by considering as measure p the Lebesgue measure.
O

Remark 11.6. We remark that we could obtain 2) directly from 4) by eval-
uating estimate (11.8) in a Dirac measure. In fact, for any zo € R™ we let
it = 0z, be the Dirac measure concentrated at xy. Then an easy computa-
tion of the maximal function M p using that M u(z) ~ |z — x| ™" yields that
for any @Q > zg,

[ 9@ dy < BV @)
On the other hand, we also have that
1f = fallpy = 1f(zo) — fal
Then, using (11.7) we obtain that
$00) = fal = 15 ~ Jally < [ IV dy < 119 51xa) o).

which is exactly (11.6).
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11.2. Another proof of one weight and two weight Poincaré inequal-
ities. We present here a “classical” proof one and two weights Poincaré
inequalities. The proofs follow from the representation in terms of the frac-
tional integral from (11.6).

Proposition 11.7. Let w € A,. Then for any Lipschitz function f and for
any cube Q we have that

(o0 IR i) " < 4@ (50 [1vsr i) "

Proof. The idea is to control the fractional integral I; by the maximal func-
tion at the level of weak norms to obtain the precise weighted estimate.
Then, the weak implies strong strategy concludes the proof. More precisely,
we have from (11.6) that

[f(2) = fol < Culi(IVfIxQ)(z) Ve,

where we assume that the cube @ is of the form Q) = Q(z,r), a cube centered
at the point z and sidelength ¢(Q) = 2r. Then, for any = € @, we have that
Q C Q(z,2r). We now decompose the cube Q(z,2r) in annular regions of
the form Qr = Q(z,2 % 1r)\ Q(x,27%r), k > 0. Then,

IV fl(y) IV f(y)
/Q\x—yn—ldy = / Owan T — Y |n—1dy
VSl
Z/k ’$_y’n 1
—k
< czék) | s

MV f]) (= 22
< UM (IVfI)( ).

IN

IN

Therefore we conclude that

(11.9) L(IVfIxQ)(x) < CHQIM(IV f)(x)

for any x € ). Now we compute the weak LP norm to obtain
I = fallgs < IR0V Az
LIMAV Dl ez

(Ql, 191122,y

by the known weighted estimate for the weak norm for the maximal function.
The weak implies strong argument finishes the proof. U

IN

IN

We have the following analogue of Proposition 11.7 for pairs of weights.

Proposition 11.8. Let (u,v) € A,. Then the following Poincaré (p,p)
inequality holds for any Lipschitz function f.

</ If - fQ\pu> < Clu, v {7 6Q (/ !vf\”v)
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Proof. The proof is the same as in Proposition 11.7. We can use the point-
wise inequality (11.6) together with (11.9) to obtain

[f(2) = fol < Cl@M(IVfIxQ)(x)  z€Q.

Taking weighted LP norms we obtain that

I = Fall e < Cull@) IM(IVF1xQ)

1
P
| M || Lo (u)— L7500 (/Q |V fIP ’U>

1

i, o ( / VP )
Q

IN

IA

since by (2.7)

1
M| ooy Loy ~ [ 0] 47

Now, the weak implies strong argument finishes the proof. O

By assuming an extra condition on the weight u, we have another result.

Corollary 11.9. Let (u,v) € A,, u € Ay, 1 < p < n, and p}, satisfying

(11.10)

1 1 1

p vy nlp+loglwla,)

Then the following two-weight Poincaré-Sobolev (p*,p),inequality holds

(20 / f—f@%w)ﬁ < w3, 4@ (5 / viP de)

P

Proof. The result follows from Lemma 5.2 and Theorem 1.5 as in the proof
of Corollary 1.13. O
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